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Preface

A lot of composers have used mathematics in their
work, but what happens when a composer decides to
represent the meaning of the objects of mathematics,
and the sensations that can be found in them, instead of
focusing on their direct application or translation? The
theoretical and artistic work of Petra Cini answers this
question creating a bridge between the metaphors of
mathematics and the ones of music.

This concert/seminar is an introduction to the work
of composer and pianist Petra Cini. She is joined by
mathematician Raf Bocklandt, who collaborated with the
composer on the creation of the (meta-)mathematical
framework used for the development of her work SO(3)
ETUDES (2021-2023).
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Introduction

Two words: Stark contrasts.

Three elements: Body, mathematical concepts, mysticism.

The structure of this concert/seminar reflects the two
different approaches, methods of creation that I employ: a
primarily intuitive one and a primarily deductive one.

On the one hand, the highly intuitive approach draws
on a focus on the development of a rhythmic and
contrapuntal sensitivity, reflected in my choices of
repertoire as a pianist. It manifests itself then as this
characteristic sensitivity in the composition of, for
example, the intuition-driven etudes for piano from the
opus ETUDES (2020-) that you will hear in the first half of
the programme. Next to these etudes I will perform three
counterpoints from the Art of Fugue by J.S. Bach.

On the other hand, the highly deductive approach is
concretized in a focus on drawing connections between
the metaphors of mathematics and the ones of music. A
creation of visceral analogies of mathematical groups,
which are abstract algebraic objects. This is achieved by
analogically and perceptually analyzing the structure and
elements of mathematical groups in terms of violence
and purity, which is the fundamental idea of my musical
theory. The second half of the evening will be dedicated to
this way of working, with the presentation of the opus
SO(3) Etudes (2021-2023) and its successive discussion.

I am extremely grateful that I had the opportunity of
collaborating with mathematician Raf Bocklandt, who
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helped me by providing the mathematical insights that
were necessary to develop the SO(3) Etudes (2021-2023).
Before the performance of the work, Raf will give an
engaging talk about symmetry, with a focus on Lie theory
and the Lie group SO(3).

I also want to thank the mathematics students from UvA
Jelle Groot, Giacomo Grevink, Yiyuan Chen and Meike de
Jong for working on the mathematics section of this
booklet, and of course Ellen Corver, Emiel Janssen
and Tim Sabel for hosting this concert/seminar at
HaagsPianoHuis.

15 April 2023
Petra Cini
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Programme

Petra Cini
6 piano etudes from ETUDES (2020-)

J.S. Bach
3 counterpoints from the Art of Fugue

Raf Bocklandt
A short story of symmetry

Break

Petra Cini
SO(3) ETUDES (2021-2023)

Petra Cini and Raf Bocklandt
Meta-mathematical musings
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Mathematics

3.1 Some history

History of groups

Figure 3.1: Évariste
Galois. [1]

In the 19th century a new
area in mathematics developed:
The theory of groups. Groups
are a mathematical way of
formalizing symmetry. And since
symmetry is used in all branches
of mathematics, groups were
a very hot area in mathematics
when they were invented.
They were first used by the
young Frenchman Évariste
Galois to prove that a polynomial
of degree 5 or higher doesn’t
have a general formula for its
roots based on its coefficients.
His ideas, however, were rejected
by his peers and his work was only
published after his death, which came far too soon for
the young Évariste: driven by love for a girl he challenged
a romantic rival to a duel, only to be lethally shot. This
happened when he was just 20 years of age.
Another mathematical branch where symmetries are very
important is geometry. In 1872 Felix Klein published the
Erlangen Program, a fundamental work for geometry.
This was a method of characterizing different geometries,
and for this method he used a lot of group theory. The
armchair mathematician might recognize Klein’s name in
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the famous finite group, the four group of Klein, which he
discovered. Klein was very interested in finite groups. [2]

History of Lie

Figure 3.2: Sophus Lie

Marius Sophus Lie was a
Norwegian Mathematician.
He was one of the main
collaborators of Group theory.
Lie was born on the 17th of
December, 1842 in Nordfjordeid.
After he graduates from
secondary school he keeps
studying the sciences and
publishes his first mathematical
work Repräsentation der
Imaginären der Plangeometrie
in 1869. After this publication
Lie receives a travel scholarship
to Berlin. In Berlin he meets
Felix Klein, a now well known
mathematician who is known for
his contribution to group theory.
Here Lie and Klein become best friends.
In 1870 Lie goes to Paris where he seeks out for other
mathematicians and Klein joins him in April. They speak
with French mathematicians Darboux and Jordan. On
the 19th of July the Franco-Prussian War breaks out.
Because they are in Paris, Klein, a German, has to flee and
Lie decides to walk from Paris to Milan. Unfortunately he
did not come far. Just outside of Paris he was arrested,
because the French thought he was a German spy. After a
couple of weeks he is released and he decides to take a
train to Milan and then to Düsseldorf, where he meets
Klein again.
Eventually Lie and his family move back to Norway where
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Lie engages in the Norwegian school and university policy
debates. He also publishes his final book Geometrie
der Berührungstransformationen. Lie receives the
Lobachevsky Prize in 1897 for his work in geometry.
[3]
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3.2 Intuitive definition of Groups and
Lie groups

A short motivation
Mathematicians in the 19th century, such as Sophus Lie
and Felix Klein were quite fond of groups. They applied
Group Theory to the field of Geometry, which you will
hear more about during the talk by Raf Bocklandt. In
other branches of mathematics, such as Topology and
Combinatorics, Group Theory is also used to solve a wide
range of problems.
Outside Mathematics, groups are found at the heart
of the most fundamental theories of our universe. The
Standard Model of particle physics, the model that
describes all matter and interacting forces in our universe,
is built upon group structures. The language of quantum
mechanics also uses groups to a great extend. In other
words, Group Theory is an essential building block for our
understanding of the universe at the moment. But what
are groups exactly?

Intuition of Group Theory
Groups are all about symmetries. To understand groups,
let us consider an equilateral triangle (all three sides have
the same length). When most people think of symmetrical
objects, they often referred to them as objects that can be
divided in to two identical halves by a mirror line. If you
flip the object 180 degrees around the mirror line, you get
the same object. In our case of the triangle, we can draw a
mirror line through each vertex, labeled with a, b and c. And
at each mirror line, we can define a reflection where we flip
the triangle around that mirror line by 180 degrees. These
reflections are denoted with σ1, σ2 and σ3 (see figure 3.3).
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Figure 3.3: Reflective symmetry in an equilateral triangle.

To mathematicians, there are more symmetries hidden in
this object. They regard symmetries in a broader and more
abstract sense:

A symmetry is some transformation that leaves the
orientation of an object unchanged.

The earlier mentioned reflections σ1, σ2 and σ3 are
symmetries by this definition. They are called reflective
symmetries. However, the most trivial example is
"do nothing", since the orientation of the object is
always unchanged if we do nothing to the object.
Mathematicians denote this transformation with e, and
gave it a fancy name, the identity.
Another example is rotational symmetry. We can rotate
the triangle clockwise by 120, 240 and 360 degrees, denoted
with ρ120, ρ240 and ρ360 respectively, and the orientation of
this triangle would remain the same (see figure 3.4). If we
label the vertices of this triangle with a, b and c, we will
notice that a 360 degrees rotation has the same effect as
"do nothing".
We can now put all these transformations together in a
collection,

G = {e, ρ120, ρ240, σ1, σ2, σ3}.
In this collection G, we ignored ρ360 because it is the same
as the identity e. Now, you might wonder if G contains
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Figure 3.4: Rotational symmetries of an equilateral triangle.

all the symmetries of the triangle we can make from
rotations and reflections. What about the combinations of
these transformation?
In fact, the special thing about G is that every combination
of transformations in G is again another transformation in
G. For instance, when we apply a 120 degree rotation
first, and then a 240 degree rotation, we denote this
combination as:

ρ240 ◦ ρ120.

This is the same as ρ360, or “do nothing”. And it is not
difficult to see that any combinations or rotations leaves
us with another rotation. Similarly, the combination of two
reflections also delivers a rotation. For instance,

σ3 ◦ σ1 = ρ240.

Last but not least, the combination of a rotation and a
reflection gives another reflection. For example,

ρ120 ◦ σ3 = σ2.

The verification of the last two statements is left to the
reader as an exercise.
As you might have guessed, G is what we call a group. In
short, a group is a collection of transformations, such that
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any combination of transformations from this collections
gives us another transformation in this collection. Since
there is only a finite amount of elements in G, we call G a
finite group.
However, there are also groups that contain infinitely many
and "continuous" transformations. For example, a circle has
infinitely many and continuous rotational transformations,
since we can rotate the circle by any degree between -180
and 180, and this rotation will leave the orientation of the
circle unchanged. In fact, this is an example of Lie Groups,
called SO(2).
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3.3 A Geometrical Interpretation of
Lie Groups

Lie group SO(2)

As discussed earlier, SO(2) is an example of a Lie group. It
represents all rotations of a circle. Each rotation of a circle
is entirely defined by its angle, which lies between -180
and 180 degrees. A very interesting property of Lie groups
is that they can be visualized as a geometric structure. In
the case of SO(2), this geometric structure is a circle. We
can identify each point of this circle as the angle between
that point, and the center of the circle. So SO(2) represents
all rotations of a circle, but it is itself a circle as well! This
can cause some confusion. One has to remember that
the circle that we want to rotate, and SO(2) are not the
same circle! A rotation of the circle that we want to rotate
corresponds with a point on the circle that is SO(2).

M

A

45◦
M

B

120◦

M

C

−100◦

Figure 3.5: The points A, B and C on the circle represent the
rotations with 45, 120 and -100 degrees respectively.
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Lie group SO(3)

SO(3) is the Lie group that represents all the rotations of a
sphere. Such a rotation can be visualized as follows: slice
the sphere into two equal parts through the center of the
sphere. The surface along which the sphere has been cut
is a circle. The rotation of the sphere is actually just a
rotation of this circle. Using SO(2), we know how to rotate
a circle! We do have different choices for which circle we
want to rotate, depending on the way in which we sliced
the sphere.

Figure 3.6: Two different ways in which a sphere can be sliced,
once along the equator and once along a 45 degree angle.

Again, SO(3) is a Lie group, so it can be visualized as a
geometric structure. In this case, the geometric structure
is a sphere. How does a point in a sphere correspond with
a rotation of a sphere? Start by drawing a line from the
point in question to the center, and extend the line to the
edges of the sphere. So we want this line to go from the
edge of the sphere, through the center and the point we
are interested in, and onto the other edge of the sphere.
Now, the angle of this line corresponds with how we
slice the sphere, and so it corresponds with the angle
along which we perform a rotation in SO(2). (This angle is
two-dimensional, but we don’t have to worry about that, it
all works out). So using the angle of the point we know
where we need to perform a SO(2) rotation, but we do not
yet know how large this rotation will be. As we know
from before, this can be anything between -180 and 180
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degrees. This will be determined by how far our point lies
from the center of the sphere. If the point is all the way on
one side, it will be a rotation of -180 degrees, if it is in the
center, it will be a rotation of 0 degrees and if it is all the
way on the other edge of the sphere, it will be a rotation
of 180 degrees. Using this method, each point in the
sphere indeed corresponds with a rotation of the sphere.
However, the sphere that we have found does have an
odd property. We know that a rotation of 180 degrees
and a rotation of -180 degrees is the same. So, this means
that two points that lie exactly opposite each other on the
edge of the sphere, represent the exact same rotation! So
if we want to see SO(3) as a sphere, we need to identify
opposite points on the edge. This is very hard to visualize.
So SO(3) represents all rotations of a sphere, and is itself a
sphere, but a very weird sphere. Again, the sphere that we
want to rotate, and SO(3) are not the same sphere. A
rotation of sphere we want to rotate corresponds with a
point in SO(3). Furthermore, the sphere that we want
to rotate is a perfectly normal sphere, while SO(3) is
apparently not. So the spheres in figure 3.6 are the sphere
that we want to rotate, while the sphere in figure 3.7 is
SO(3).

Figure 3.7: As A and B lie on the edge and exactly opposite each
other, they represent the same rotation, so we should see them
as being the same point in SO(3)!
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Lie Algebra

Each Lie group has a corresponding Lie algebra. The Lie
algebra can be seen as a representation of the Lie group
at a very basic level: it can tell you some basic properties
of the group. This can be visualized as zooming into the
group, and looking at very small changes between
elements of the group, and how those changes behave.
Whilst zooming into the group, some information of the
group is lost. This can cause two different Lie groups to
have the same Lie algebra. For example, we can look at a
Lie group that is represented by a sphere, SO(3), and a Lie
group that is represented by a doughnut. If we were to
zoom in into those groups to find their respective Lie
algebra’s, at some point, we won’t be able to distinguish
the two groups anymore, as very small surfaces of spheres
and doughnuts are basically the same. So different Lie
groups can share a Lie algebra.
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About

Petra Cini
is an Italian composer and
pianist based in the Hague
(NL) focusing on the creation
of musical representations of
mathematical groups. She is
also devoted to the development
of a rhythmic and contrapuntal
sensitivity, reflected in her
choices of repertoire as a pianist.

Petra is currently pursuing a Master’s Degree in Composition
from the Royal Conservatoire The Hague for which
she was awarded an Excellence Scholarship. Her
master research project ‘The Musical Metaphor and
Representation Theory’ was awarded funding by Stichting
De Zaaier. Previously, she studied piano with pianist
Gloria D’Atri, among others, and at the International
Piano Academy “Incontri col Maestro” in Imola with
internationally known pianist Jin Ju. She holds a Master’s
Degree in Piano Performance from the Conservatory
“Luigi Cherubini” (10/10). In collaboration with Prof. Raf
Bocklandt and Prof. Eric Opdam from the Korteweg-de
Vries Institute for Mathematics, University of Amsterdam,
she is now developing concert/seminars focusing on
musical representations of Lie groups.
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Further work:

Youtube: https://www.youtube.com/@PetraCini

Website: http://www.petracini.it/

Theory: http://www.petracini.it/works/
a-damaged-purity/
https://www.youtube.com/playlist?list=
PLZAsHf-N7B_q__VXQO92uSqWbcDJUlcYl
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Raf Bocklandt
is a mathematician at the KdVI
at the University of Amsterdam
specializing in representations
of quivers and its applications.

Raf Bocklandt was born in
Hamme in Belgium. He studied
mathematics at the university
of Ghent and did a Phd at the

University of Antwerp. After doing Post-docs in Bielefeld
and Rome, he became a lecturer at the University of
Newcastle. In 2013 he moved to the University of
Amsterdam and since 2021 he is the program director of
the Bachelor Mathematics. Raf is interested in many
aspects of Geometry and Algebra, but he is also involved
in science popularizing. In 2019 he gave a public lecture
for the Universiteit van Nederland about geometry of
higher dimensional spaces.

More info:

Youtube: https://www.youtube.com/watch?v=
1zVAPVUHrF0&t=191s

Website: http://algebra.hopto.org/wis/website/

KdVI
website:

https://kdvi.uva.nl/?cb
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